Bispecific T cell recruiting antibody enhances anti-tumor activity of adoptive T cell transfer

Sebastian Kobold1, Julius Steffen1, Michael Chaloupka1, Simon Grassmann1, Jonas Henkel1, Raffaella Castoldi2, Yi Zeng1, Markus Chmiliewski3, Jan C. Schmollinger1, Max Schnurr1, Simon Rothenfußer1, Dolores J. Schendel4, Hinrich Abken3, Claudio Sustmann2, Gerhard Niederfellner2, Christian Klein5, Carole Bourquin1,6 and Stefan Endres1

1 Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany, Member of the German Center for Lung Research

2 Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany

3 Center for Molecular Medicine Cologne (CMMC) and Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany.

4 Institute of Molecular Immunology; Helmholtz Zentrum München and Clinical Cooperation Group "Immune Monitoring"; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich, Germany; oder Medigene AG, Planegg-Martinsried, Germany

5 Pharma Research and Early Development, Roche Glycart AG, Schlieren, Switzerland

6 Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland

Background: One bottleneck for adoptive T cell therapy (ACT) is the recruitment of T cells into the tumor. We hypothesized that adoptive transfer of tumor-specific T cells transduced with a marker antigen in combination with a bispecific antibody (BiAb) exclusively recognizing these T cells and tumor cells would result in improved T cell recruitment to tumors and enhance their therapeutic efficacy.

Methods: SV40 T antigen specific T cells were retrovirally transduced with truncated human EGFR as a marker protein. Targeting and killing by combined ACT and anti-EGFR x anti-EpCAM BiAb therapy of the murine gastric cancer cell line GC8 (SV40 T Ag+ and EpCAM+) was analyzed. Anti-EGFR x anti-c-Met BiAb was used for targeting of human T cells to the melanoma cell line mel624.38 and to the colon cancer cell line LS174T.

Results: The BiAb efficiently cross-linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. Combination therapy resulted in increased T cell infiltration of tumors, retarded growth of subcutaneous transplanted tumors and prolonged survival compared to treatment with T cells in combination with control antibody (p< 0.0001). In the human system this combined strategy translated into enhanced recruitment of T cells to c-Met expressing cancer cells and enhanced recognition of tyrosinase+ melanoma cells as well as of CEA+ colon cancer cells by TCR and by chimeric antigen receptor expressing T-cells, respectively.

Conclusions: BiAb recruiting tumor-specific T cells transduced with a marker antigen to tumor cells have the potential to enhance efficacy of adoptive T cell therapy. This strategy may overcome respective limitations of either approach alone.